

Design and Implementation of Combinatorial Gradient Libraries

Al Crosby, Paul Smith, Christopher Stafford

NCMC-1, April 26th, 2002

Combinatorial Methods

- What is Combi?
 - A set of tools and techniques which allow a large number of experiments to be conducted in parallel in a short amount of time
- Why Combi? Advantages
 - speeds up time for discovery of new materials
 - shortens the time to market
 - lowers material consumption
 - explores parameter space in one experiment

Challenges

- requires innovative design of experiment
- requires some level of automation
- generates massive amounts of data

Combinatorial Methods

"Split and Pool"

Two popular methods used for pharmaceutical and catalyst discovery.

Microwell Arrays

NCMC.

Combinatorial Methods

Gradient Libraries

Library where the experimental parameter changes in a continuous manner as a function of position

No "gaps" in parameter space Minimize automation Generate "property maps"

Challenges

Can be hard to create
Experimental artifacts may be induced
Difficult to characterize

Gradient Library Design and Implementation

Goal: Detail steps for gradient library design

Assumptions:

- Have basic knowledge of problem to be studied
 - Length scale of phenomena
 - Important parameters
- Library characterization is possible

NCMC

In actual experimental design, all assumptions may not hold. Design process is ITERATIVE in nature.

Critical Steps for Gradient Library Design

Define parameter space

- What parameters control the problem / process?
- What are the critical size scales or ranges?

2. Survey existing techniques

- How are conventional samples prepared?
- What can we learn?

3. Develop and evaluate

- Rational trial and error
- How do we evaluate success?

4. Refine the method

- What are the limiting variables?
- How can we control process variability?

5. Extend the method

Define Parameter Space

NCMC TO THE PARTY OF THE PARTY

Problem: Block Copolymer Coatings

Material: PS/PMMA

(cast from dilute solutions)

Critical Variables:

Temperature

Film Thickness
Surface Energy

Measurable Parameters:

Defect/Morphology size

Initial Characterization:
Optical Microscopy

Critical Steps for Gradient Library Design

1. Define parameter space

- What parameters control the problem / process?
- What are the critical size scales or ranges?

2. Survey existing techniques

- How are conventional samples prepared?
- What can we learn?

3. Develop and evaluate

- Rational trial and error
- How do we evaluate success?

4. Refine the method

- What are the limiting variables?
- How can we control process variability?

Extend the method

Survey Existing Techniques

Begin by surveying existing techniques that might be modified for use in creating the library

For thin film deposition some candidates are:

- Dip Coating
- Doctor Blading
- Meier Rods
- Solvent Casting
- Spin Coating
- Spray Coating

NCMC

Survey Existing Techniques

Technique	Thickness Range (m)	Viscosity Range	Reproducibility/ Uniformity
Spin Coating	10 ⁻⁹ – 10 ⁻⁵	Low-Medium	Excellent
Dip Coating	10 ⁻⁷ – 10 ⁻³	Medium-High	Fair
Spray Coating	10 ⁻⁹ – 10 ⁻³	Low	Fair
Doctor Blade	10 ⁻⁸ – 10 ⁻³	Low-High	Good
Meier Rods	10 ⁻⁶ – 10 ⁻³	Med-High	Good
Solution Cast	10 ⁻⁷ – 10 ⁻³	Low	Poor
Our Needs	10 ⁻⁹ – 10 ⁻⁷	Low	Good

- NCMC 🏄

- What parameters control the problem / process?
- What are the critical size scales or ranges?

2. Survey existing techniques

- How are conventional samples prepared?
- What can we learn?

Develop and evaluate

- Rational trial and error
- How do we evaluate success?

4. Refine the method

- What are the limiting variables?
- How can we control process variability?

5. Extend the method

Method Development: Trial 1

Idea

Low acceleration produces a radial gradient in film height

Result

Low acceleration produced non-uniform film, but...

No "gradient" was found Very hard to control and reproduce Difficult to characterize film

Method Development: Trial 2

Modification of Spray Coating Technique

Spray coat on a substrate moving at variable speed to create a thickness gradient

Idea

By changing the stage speed the coating thickness forms a gradient on the substrate Result

Films with gradually increasing thickness are produced but ...

NCMC

Film thickness non uniform

Thickness of film hard to control

Difficult to characterize film thickness

Method Development: Trial 3

Modification of Doctor Blade Technique

Doctor Blade a film on a substrate with a variable blade height to create a thickness gradient

Idea

Result

Films had very shallow gradients that were non-uniform and hard to reproduce

NCMC

By varying the blade height across the substrate a gradient in thickness is created

However:

It was observed that when the stage speed was changed the "average" film thickness changed

-1--

NCMC

Method Development: Flow Coater

Modification of Doctor Blade Technique
Blade height is kept constant while the substrate
accelerates

As the stage velocity increases more of the viscoelastic solution is deposited on the substrate creating a thicker film Works well for thin films with low viscosity solutions

Method Development: Flow Coater

\$2 putty knife from Home Depot*
with the handle removed

Si W

Si Wafer held to stage with tape

NCMC

Newport* optical mounting stages:

- 2 "L" brackets
- 1 height adjustment stage
- 1 angular adjustment stage

Computer controlled Daedal* motion stage with Parker* Motor (\$15,000)

50 mm stage travel

25 mm/sec maximum velocity

*Certain equipment and instruments or materials are identified to adequately specify the experimental details. Such identification does not imply recommendation by NIST.

NCMC &

Method Development: Flow Coater

Critical Steps for Gradient Library Design

1. Define parameter space

- What parameters control the problem / process?
- What are the critical size scales or ranges?

2. Survey existing techniques

- How are conventional samples prepared?
- What can we learn?

3. Develop and evaluate

- Rational trial and error
- How do we evaluate success?

Refine the method

- What are the limiting variables?
- How can we control process variability?

5. Extend the method

Method Refinement: Determination of Critical Parameters

Calibration

Want to determine and understand parameters that influence the library preparation

For the flow coater:
blade height
stage motion parameters
velocity
acceleration
solution viscosity
concentration
polymer M_w

Critical Steps for Gradient Library Design

1. Define parameter space

- What parameters control the problem / process?
- What are the critical size scales or ranges?

2. Survey existing techniques

- How are conventional samples prepared?
- What can we learn?

3. Develop and evaluate

- Rational trial and error
- How do we evaluate success?

4. Refine the method

- What are the limiting variables?
- How can we control process variability?

Extend the method

NCMC STATE OF THE PARTY OF THE

Extending Capability

Identify the next problem/process:

- Different polymers
- Different solvents
- Different substrates
- Different length scales (i.e. thicker films)

Questions to ask:

- What parameters will change?
- Do we need a new technique?

Examples:

- Casting films at elevated temperatures (incorporate hot plate)
- Casting films from high viscosity solutions (adjust blade height continuously during casting)

Gradient Library Variables

NCMC STATE OF THE PARTY OF THE

Variables:

- •Film thickness
- Crosslink density
- Chemical functionality
- Crystallinity
- Blend composition
- Surface Patterns

Properties:

- Confinement
- Surface energy
- Adhesion energy
- Toughness
- Biocompatibility
- Miscibility / Phase separation
- Wettability

Poly(styrene-b-methyl methacrylate)

H ~ 70 -120 nm

Poly(vinyl cinnamate)
H ~ 120 nm

Optimizing Library Efficiency (adding multiple gradients)

We have only discussed single gradient libraries, but a second dimension remains unused!

Variable 1

Variable 2

For investigating block copolymer coatings, surface energy is a logical second variable

NCMC

Critical Issues for Multiple Gradient Libraries

- How will order of preparation influence the library?
- Will one gradient influence the other gradient?
- How stable are the gradients?

Example: Thickness vs. Temperature

- Temperature should be added second
- Temperature can change thickness
- Stability depends upon material and time

NCMC

